

2×Taq-AS PCR Mix

REF: EG21103-S/M

Storage Condition

-20°C

Components

Component	EG21103S	EG21103M
2×Taq-AS PCR Mix	1 ml	5×1 ml

Description

Taq-AS PCR Mix is a ready-to-use PCR mix with the concentration of 2×. It offers convenience and reduces the risk of contamination. PCR products synthesized with this mix have an overhang of A bases at the 3' end, enabling direct T/A cloning after purification.

The Taq DNA polymerase in this mix is a mutated variant called Taq-AS (Advanced Strong) DNA Polymerase, which is able to amplify DNA fragments up to 5 kb efficiently. It exhibits excellent tolerance to inhibitors and has a three-fold faster amplification rate compared to wild type Taq DNA polymerase, significantly reducing the time required for PCR extension. Unlike fusion protein-based fastTaq polymerases, Taq-AS behaves more similarly to WT-Taq, minimizing issues such as band smearing, trailing, or alteration of fragment sizes.

Quality Control Assays

Endonuclease Activity

A 50 μ l reaction containing 200 ng of supercoiled plasmid and 25 μ l of 2×Taq-AS PCR Mix incubated for 4 hours at 37°C results in <10% conversion to the nicked or linearized form as determined by agarose gel electrophoresis.

Non-specific Nuclease Activity

A 50 μ I reaction containing 15 ng of dsDNA fragments and 25 μ I of 2×Taq-AS PCR Mix incubated for 16 hours at 37°C results in no detectable degradation of the dsDNA fragments as determined by agarose gel electrophoresis.

Protocol

1. PCR Reaction System

Reagent	Amount	Final Concentration
2×Taq-AS PCR Mix ^a	25 µl	1×
Forward Primer (10 μM) ^b	1~2 µl	0.2~0.4 μM
Reverse Primer (10 μM) ^b	1~2 µl	0.2~0.4 μM
Template DNA ^c	χμΙ	
ddH ₂ O	To 50 µl	

- a. Thaw out before use.
- b. Recommended final primer concentration is 0.2~0.4 $\mu M.$ Adjustments can be made in the range of 0.1~1 $\mu M.$
- c. Optimal reaction concentrations may vary for different templates. For a 50 μ l reaction system, the recommended template amounts are approximately 10~400 ng for genomic DNA and 10 pg~20 ng for plasmid or viral DNA.

2. Three-Step PCR Program

Step	Temperature	Time	
Initial Denaturation ^d	94°C	3~5 min	-
Denaturation	94 °C	30 s	•
Annealing	55~65 °C	30 s	30~35 Cycle
Extension	72 °C	20~40 s/kb	
Final Extension	72 °C	5 min	

3. Two-step PCR Program (for Target Fragments ≥3 kb)

Step	Temperature	Time	
Initial Denaturation ^d	94°C	3~5 min	30~35 Cycle:
Denaturation	94°C	30 s	
Annealing and Extension	68 °C	30 s/kb	
Final Extension	72 °C	5 min	

d. For colony PCR, a longer initial denaturation (\geq 5 min) is beneficial for cell lysis.