

High-Accuracy Reverse Transcriptase

REF: EG21104S

Storage Condition

-20°C

Components

Component	Amount
High-Accuracy Reverse Transcriptase (200 U/μI)	50 μl
5× M-MLV First Strand Buffer	500 µl
0.1 M DTT	100 µl

Description

High-Accuracy Reverse Transcriptase is a RNase H-deficient Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase cloned and expressed through genetic modification and recombinant technology. It coupled with a reversibly-bound aptamer that inhibits Reverse Transcriptase activity below 40 $^{\circ}\text{C}$, thereby enhancing product specificity. Through genetic engineering, the enzyme's optimal reaction temperature has been increased to $50\,^{\circ}\text{C}$, providing stronger extension capability and making it suitable for longer cDNA synthesis.

Definition of Activity Unit

The enzyme quantity needed to incorporate 1 nmol of $[^3H]$ dTTP in 10 minutes at 37°C using Poly(A)-Oligo(dT) as template/primer is defined as 1 unit of activity.

Quality Control Assays

Residual Host DNA

The product was tested by TaqMan qPCR with primers specific for the *E.coli* 16S rDNA, and the results show that the *E.coli* genome residues less than 1 copy/10 copies.

Endonuclease Activity

The product was tested in a reaction containing a supercoiled plasmid DNA substrate. After incubation for 4 hours at 37°C , there was no significant change of the DNA substrate by agarose gel electrophorresis.

Exonuclease Activity

The product was tested in a reaction containing DNA substrate. After incubation for 16 hours at 37°C , there was no significant change of the DNA substrate by agarose gel electrophorresis.

Protocol

first-strand cDNA synthesis:

1. Prepare the following reaction system on ice:

····		
Reagent	Amount	
Primer	ΧμΙ	
$Oligo(dT)_{20}$	The final concentration is 2.5 μM	
Or Random Primer	The final concentration is 2.5 ng/µl	
Or Gene-specific Primers	The final concentration is 0.25 μM	
Template RNA ^a	50 ng~1 μg/20 μl	
dNTP Mix (10 mM Each)	1 μΙ	
Nuclease-Free Water	To 13 µI	

- a. It is recommend to use high-quality RNA extracted using a kit that removes genomic DNA contamination as a template.
- 2. Incubate the above mixture at 65°C for 5 minutes, then quickly place it on ice for 1 minute to cool.
- 3. Add to the reaction mixture:

Reagent	Amount
5× M-MLV First Strand Buffer	4 μΙ
0.1 M DTT	1 μΙ
High-Accuracy Reverse Transcriptase	1 μΙ
(Optional) RNase Inhibitor (40 U/µI)	1 μΙ

- 4. Mix gently and spin down.
- 5. If using Oligo(dT) $_{20}$ or gene-specific primers, incubate at 50°C for 30 minutes. If using random primers, first incubate at 25°C for 5 minutes, followed by incubation at 50°C for 30 minutes.
- 6. Terminate the reaction by incubating at 85°C for 5 minutes.
- 7. Place the obtained cDNA solution on ice for use in subsequent experiments.

Note: The cDNA solution can be stored at -20°C for up to six months. Long-term storage is recommended at -80°C .