

Taq-HS Probe qPCR Premix (Universal)

REF: EG20121M

Storage Condition

Store at -30~-15°C and protect from light. Transport at ≤0°C .

Components

Component	Amount
Taq-HS Probe qPCR Premix (Universal)	5×1 ml

Description

Taq-HS Probe qPCR Premix is a 2× pre-mixed solution developed for real-time quantitative PCR based on the unique "double-block" hot-start Taq DNA polymerase. This product contains all the fluorescent quantitative PCR components except for primers and sample DNA, reducing operational steps, shortening the time, and lowering the risk of contamination. It is ideal for TaqMan probe-based detection using cDNA or DNA as the template.

This product contains universial correction dye that are compatible with all of qPCR devices, including instruments that require ROX calibration, and do not require additional dyes to correct the instrument.

Protocol

1. Notes

- ① Avoid strong light exposure during usage and storage to protect the pre-mixed dye
- ② Mix gentle and thoroughly by turning the tube up and down before use. Do not vortex to generate excessive bubbles;
- 3 This mixture contains universal corrective dyes for all qPCR instrucments.

2. Prepare the following mixture in a qPCR tube

Reagent	Amount	Final concentration
Taq-HS Probe qPCR Premix	10 μΙ	1×
Forward primer (10 µM) ^a	0.4 μΙ	0.2 μΜ
Reverse primer (10 µM) ^a	0.4 μΙ	0.2 μΜ
TaqMan probe (5 μM) ^b	1 μΙ	0.25 μM
DNA template ^c	XμI	10~200 ng/20 μl
Nuclease-Free Water	To 20 µl	

- a. Commonly used primer concentration: 0.2 μ M final. Adjust between 0.1~1 μ M. The primer length should be set at 18~25 bp, with a GC content of 40%~60%. The optimal efficiency for amplifying the target fragment is generally 80~200 bp. When designing, it's important to avoid complex structures such as hairpins, dimers, and to span intron regions whenever possible.
- b. Commonly used probe concentration: 0.25 μM final. Adjust between 0.1~1 μM .
- c. Suggested template volume: $1\sim2$ µl. Do not exceed 10% of the total volume if the template is undiluted cDNA. As the copy number of target gene in different DNA templates varies, gradient dilution can be performed if necessary to determine the optimal amount of DNA template.

3. qPCR program (Adjust according to the instrument used)

2-step PCR

Step	Temperature	Time
Pre-denaturation	95°C	5 min
Denaturation	95 °C	10 s
Annealing & Extension	60°C	30 s

Notice

- 1. Before use, please mix it upside down gently to avoid foaming, and centrifuge it briefly before use.
- 2. Avoid repeated freezing and thawing of Mix, and try to use it up within 3 months after opening.

FAQ & Troubleshooting

Problem	Possible Reason	Solution	
Disordered or missing amplification curves	Incorrect instrument settings	Adjust settings according to the instrument manual	
	Improper primer or template concentration	Adjust primer and template concentrations	
	Inappropriate PCR reaction conditions	Reduce annealing temperature, extend extension time, etc. For target fragmen with high GC content, consider extending the denaturation time appropriately	
	Primers or templates with complex secondary structures	Optimize primers	
	Poor sample purity	Purify the sample	
Poor reproducibility of quantitative values	The instrument settings are incorrect	Adjust settings according to the instrument manual	
	Poor sample purity	Purify the sample	
	Improper primer concentration	Try increasing the primer concentration appropriately	
	Inappropriate PCR reaction conditions	Try reducing the annealing temperature, extending the extension time, etc	
	Inappropriate primer design	Redesign primers, Reduce the complex secondary structure of the target fragment	
	Experimental operational errors	Strictly follow the operating procedures to ensure accurate volumes of each component in the reaction system	
Signal from NTC	Contamination has occurred	Change water, primers, pipette tips, and PCR tubes one by one to find and eliminate the contaminant source. Open a fresh tube of Mix if necessary.	