

High T7 RNA Polymerase

REF: EG20125-S/M

Storage Condition

-20°C

Components

Component	EG20125S	EG20125M
High T7 RNA Polymerase(50 U/µI)	100 µl	500 µl
10× T7 RNA Pol Buffer	1.25 ml	1.25 ml

Description

High T7 RNA Polymerase is a genetically engineered thermostable T7 RNA polymerase, which exhibits high specificity for the bacteriophage T7 promoter sequence. Compared to the wild-type T7 RNA polymerase, High T7 RNA Polymerase enables efficient in vitro transcription (IVT) at temperature from 37 to 52°C .

Definition of Activity Unit

One unit is defined as the amount of enzyme that incorporate 1 nmol of ATP into acid-insoluble material in 1 hour at 50° C.

Applications

- 1. Synthesis of single-stranded RNA, including pre-mRNA, siRNA, gRNA, and other types of RNA precursors.
 - 2. Synthesis of labeled or unlabeled highly specific RNA probes.
 - 3. Synthesis of capped mRNA using cap analog.

Quality Control Assays

Protein Purity

The enzyme is ≥95% pure as determined by SDS-PAGE analysis using Coomassie Blue staining.

Endonuclease Activity

A 20 μ I reaction containing 1 μ g of supercoiled plasmid and 50 U of High T7 RNA polymerase incubated for 4 hours at 37°C results in <10% conversion to the nicked or linearized form as determined by agarose gel electrophoresis.

Non-Specific Nuclease Activity

A 20 μ I reaction containing 15 ng of dsDNA fragments and 50 U of High T7 RNA polymerase incubated for 16 hours at 37°C results in no detectable degradation of the dsDNA fragments as determined by agarose gel electrophoresis.

RNase Activity

A 10 μ I reaction containing 500 ng of total RNA and 50 U of High T7 RNA polymerase incubated for 1 hour at 37 $\,^{\circ}$ C results in > 90% of the substrate RNA remains intact as determined by agarose gel electrophoresis.

Protocol

1. Prepare the following reaction mixture on ice:

Reagent	Amount	Final Concentration
10×T7 RNA Pol Buffer	2 μΙ	1×
CTP/ GTP/ ATP/ UTP (100 mM each)	0.1~0.4 µl each	0.5~2 mM each
RNase Inhibitor (40 U/μI)	0.5~1 µl	1~2 U/µl
Template DNA	0.1~1 µg	-
High T7 RNA Polymerase(50 U/µI)	1~2 µl	-
Nuclease-Free Water	up to 20 μl	-

Note: It is recommended to add Nuclease-Free Water first, followed by CTP/GTP/ATP/UTP.

- 2. Mix gently and spin down, then incubate at 50°C for 1 h.
- 3. After the in vitro transcription (IVT) reaction, add 1 μ I of dsDNase (REF: EG20206) to the product and incubate at 37°C for 15 minutes to remove the DNA template.

Notice

- 1. The purity of the template DNA is crucial for IVT reactions. Residual RNase A introduced during plasmid DNA extraction can significantly affect the quality of transcribed RNA. It is recommended to use high-purity RNase-free plasmids with an A_{260}/A_{280} ratio of 1.8~2.0.
- 2. The template DNA can be obtained from linearized circular plasmids or PCR. The upstream region of the template DNA should contain a T7 promoter sequence, while the downstream region should have a blunt end or a 5'-overhand.
- 3. For your safety and health, please wear a lab coat, disposable gloves, and a mask while conducting the experiment.